Discussion 8 Worksheet Gradients and directional derivatives

Date: 9/17/2021
MATH 53 Multivariable Calculus

1 Gradients

Compute the gradients of the following functions.
(a) $f(\theta, \phi)=\cos \theta \cos \phi$
(b) $f(x, y)=\arctan (y / x)$
(c) $\left.f(t, x, y)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-(x-y)^{2} / 4 t\right)\right)$. (Express everything as multiples of $f(t, x, y)$.)

2 Directional Derivatives

1. Consider $f(x, y)=e^{-r^{4}}$ where $r=\sqrt{x^{2}+y^{2}}$. Compute its directional derivative at $(0,0)$ w.r.t. the unit vectors in (polar) directions $\theta=0, \pi / 4, \pi / 2$. What about any other angle?

3 Rate of Change

Find the maximum rate of change of f at the given point and direction in which it occurs.
(a) $f(x, y)=4 y \sqrt{x}$ and $(4,1)$;
(b) $f(x, y)=\sin (x y)$ at $(1,0)$;
(c) $f(x, y, z)=x /(y+z)$ at $(8,1,3)$.
(d) Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+y^{2}-2 x-4 y$ is $\langle 1,1\rangle$.

4 True/False

(a) T F Partial derivatives are just a special case of directional derivatives.
(b) T F Consider $f(x, y)=(\cos x+(1+x) \tan y) e^{x^{2}-1+y}$. Then $\frac{d}{d t} f\left(t^{2}, t^{3}\right)=0$ at $t=0$.
(c) T F Suppose you compute the gradient of $v(s, T)=s / T$, where s has units of miles and T has units of hours. Then the magnitude of ∇v is well-defined.
(d) T F When $\vec{u} \perp \nabla f$ at a point, then $D_{\vec{u}} f=0$ at that point.
(e) T F If $\vec{u}=\langle a, b\rangle$ is a unit vector and f has continuous second partials, then $D_{\vec{u}}^{2} f(x, y)=$ $f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2}$ where $D_{\vec{u}}^{2} f=D_{\vec{u}}\left[D_{\vec{u}} f(x, y)\right]$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

